建筑抗震设计中的延性设计(共3054字)
摘要:地震中结构进入弹塑性状态后,只能依靠变形吸收能量以维持结构“安全”,所以,结构抗震设计的根本验算应是强震作用下结构的变形验算,因此从某种意义上说,结构抗震的本质就是延性。一个结构具有较大延性或较高耗能能力的话,即使承载力较低,也能够吸收较多能量,抗御较强地震而不会倒塌。
关键词:塑性铰;吸能耗能;变形能力;结构延性
结构、构件或截面的延性是指从屈服开始至达到最大承载力或达到以后而承载力还没有显著下降期间的变形能力,也就是说,延性是反映结构、构件或截面的后期非弹性变形能力,变形能力是指结构、构件或截面达到最大破坏状态时的最大变形,而变形能力是结构吸能和耗能能力的外在表现,所以延性的本质是吸能和耗能。结构所吸收的地震能量,等于结构承载力与变形能力的乘积,也就是说结构抗震能力是由承载力和变形能力两者共同决定的。
在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。地震中结构进入弹塑性状态后,只能依靠变形吸收能量以维持结构“安全”,所以,结构抗震设计的根本验算应是强震作用下结构的变形验算,因此从某种意义上说,结构抗震的本质就是延性。
以我们当前对地震的认识水平,要准确预测结构物与地基在未来地震作用下的抗震能力,尚难以做到。因此,结构的抗震能力应着眼于结构物与地基整体抗震能力的概念设计,再辅以必要的计算分析和构造措施,从根本上消除结构物与地基中的抗震薄弱环节,才有可能使设计出的结构具有足够的抗震可靠度。
结构体系的抗震能力综合表现在强度、刚度、和延性三者的统一,即抗震结构体系应具有必要的强度和良好的变形能力,如果抗震结构体系有较高的抗侧强度,但同时缺乏足够的延性,这样的结构在大震作用下很容易破坏。例如不配筋又无钢筋混凝土构造柱的的砌体结构,其抗震性能较差。另一方面,如果结构有较大的延性,但抗侧力的能力不足,这样的结构在大震作用下,必然产生较大的变形,如纯框架结构,其抗震性能依然较差,震害调查表明,在历次地震中,钢筋混凝土纯框架破坏严重,甚至倒塌者屡见不鲜。
结构体系是由各类构件连接而成的,各个构件的抗震能力是结构体系抗震能力的前提,抗震结构的构件应具备必要的强度、适当的刚度、良好的延性和可靠的连接,并应重视强度、刚度和延性的合理均衡。但强度、刚度和延性三者之间并不是相互独立的,结构体系的抗震能力是强度、刚度和延性三者的矛盾统一。构件刚度太大,会降低结构的延性,同时自振周期变短,增大地震作用,地震作用增大的同时则要求结构及其构件具有较高的承载力,而较高的承载力往往以提高造价和降低结构变形能力为代价;构件刚度过小,在地震作用下,结构变形过大,会导致结构构件的破坏甚至整体倒塌。必要的强度、刚度和延性三者缺一不可,但其中延性的设计尤为突出,是做到大震不倒的关键所在。但在实际工作中,结构工程师往往只注重结构的强度,认为强度高的构件或结构必然是安全的,而忽视了对延性的设计,这种强度较高的构件或结构给人以安全的假象,实际在强震作用下因为缺乏足够延性而存在较大的安全隐患。
延性的设计主要依靠合理的抗震措施,如砌体结构,具有较大的刚度和一定的强度,但延性较差,若在砌体中设置圈梁和构造柱,将墙体横竖相箍,起到骨架作用,则可以大大提高变形能力。又如较长的钢筋混凝土抗震墙,刚度大强度高,但延性不足,若在抗震墙中用弱连梁把墙体划分为若干并列墙段,则可以大大改善墙体的变形能力,做到强度、刚度和延性的合理分配。
延性的本质是吸能和耗能,结构的吸能和耗能能力,主要依靠结构或构件在预定部位产生塑性铰,即结构可承受反复的塑性变形而不倒塌,仍具有一定的承载能力,预定部位是指在该位置塑性铰的形成不会危机整个结构的安全。
为了提高结构的延性,在设计中应采取以下的概念设计:(1)利用结构各部分的联系构件或非主要承重构件形成“耗能元件”。在对这种“耗能元件”合理设计后,可使整个结构在预估的罕遇地震下产生可以承受的破坏,并消耗相当的地震能量,从而维持了整个结构体系的稳定和继续承受荷载的能力。如设有连梁的并联抗震墙,连梁即可设计成很好的耗能元件,以使罕遇地震作用下连梁先出现塑性铰;又如框架结构的填充墙,经合理设计后可增加结构的强度和刚度,同时在地震反复作用下填充墙产生裂缝,可以大量吸收和耗散地震能量,起到耗能元件作用,即同时增大了结构的延性,因为填充墙同时影响到结构的强度、刚度和延性,所以结构设计师应提高对填充墙的设计认识,而不仅仅是作为结构上的荷载来处理。
(2)将塑性铰控制在一系列有利部位,把能量耗散在整个结构的平面和刚度上。为使结构在强震下出现塑性铰以吸能和耗能,必须在设计时有意识地在一些构件中采取特殊的构造措施,使塑性变形集中在一些潜在的屈服区,使结构具有更有利的塑性重分布能力,使这些并不危险的部位首先形成塑性铰或发生可以修复的破坏,从而保护主要承重体系。否则塑性铰的出现可能使结构过早倒塌。如在钢筋混凝土框架设计中要求“强柱弱梁”的原则,其目的就在于使框架结构的塑性铰先出现在各梁端而不是柱端。(3)要求结构具有尽可能多的赘余度。若结构没有适当的赘余度,在出现塑性铰时就会形成几何可变的“机构”,失去承载能力而倒塌。一般来说,超静定次数越高,对抗震越有利,但这不是充分条件,主要与形成屈服区和塑性铰的部位直接相关。如在框架或框架剪力墙体系中,当框架梁端或连梁端部出现塑性铰时,均不至于导致整个结构的破坏。因此,抗震设计中的一个重要原则是结构应具有较好的赘余度和内力重分布的功能,即使部分构件退出工作,其余构件仍能承但地震作用和相应的竖向荷载,避免整体结构的连续垮塌。
应当看到,尽管延性设计在经济上有很大的优越之处,但这些优越总是以结构出现一定程度的损伤为代价,这是在设计延性抗震结构时必须预先了解到的,但考虑到只要能实现我们三水准的抗震设防目标,即保证“小震不坏”、“中震可修”、“大震不倒”,我们的抗震设计就是成功的,出现损伤是完全可以接受的。
总之,地震从能量观点看,就是地下能量的释放,建筑结构所受的地震作用实际上就是一种能量的传递,在接受到地下能量的同时,如何吸收和消耗这些能量就成为抗震设计的本质内容,即是延性设计。从钢筋混凝土结构抗震概念设计的基本原则,到结构抗震承载力和变形验算以及抗震措施的制定,都是为了保证结构或构件延性,因此只有把握了抗震设计的本质问题,才能真正设计出具有较好抗震性能的结构,实现安全与经济的完美结合。
参考文献
[1]顾渭建.钢筋混凝土杆系结构的耗能机理和延性设计[J].工业建筑,1997(11).
[2]施岚青.建筑抗震设计[J].机械工业出版社,2011.
[3]李宏.建筑结构延性抗震设计分析[J].科技创新导报,2010(03).
作者:郭喜斌 单位:太原理工大学建筑设计研究院